首页> 外文OA文献 >Use Case Point Approach Based Software Effort Estimation using Various Support Vector Regression Kernel Methods
【2h】

Use Case Point Approach Based Software Effort Estimation using Various Support Vector Regression Kernel Methods

机译:基于用例点法的软件工作量估算   支持向量回归核方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The job of software effort estimation is a critical one in the early stagesof the software development life cycle when the details of requirements areusually not clearly identified. Various optimization techniques help inimproving the accuracy of effort estimation. The Support Vector Regression(SVR) is one of several different soft-computing techniques that help ingetting optimal estimated values. The idea of SVR is based upon the computationof a linear regression function in a high dimensional feature space where theinput data are mapped via a nonlinear function. Further, the SVR kernel methodscan be applied in transforming the input data and then based on thesetransformations, an optimal boundary between the possible outputs can beobtained. The main objective of the research work carried out in this paper isto estimate the software effort using use case point approach. The use casepoint approach relies on the use case diagram to estimate the size and effortof software projects. Then, an attempt has been made to optimize the resultsobtained from use case point analysis using various SVR kernel methods toachieve better prediction accuracy.
机译:在软件开发生命周期的早期阶段,通常无法清楚地确定需求的细节,软件工作量估算工作是至关重要的一项。各种优化技术有助于提高工作量估算的准确性。支持向量回归(SVR)是帮助获取最佳估计值的几种不同的软计算技术之一。 SVR的思想是基于在高维特征空间中线性回归函数的计算,其中输入数据是通过非线性函数进行映射的。此外,可以将SVR内核方法应用于输入数据的转换,然后基于这些转换,可以获得可能的输出之间的最佳边界。本文进行的研究工作的主要目的是使用用例点方法来估计软件工作量。用例点方法依赖用例图来估计软件项目的规模和工作量。然后,已尝试优化使用各种SVR内核方法从用例点分析获得的结果,以实现更好的预测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号